Sound Exchange and Performance on Internet2
Mara Helmuth

University of Cincinnati, College Conservatory of Music, Center for Computer Music
Cincinnati, OH 45221-0003

ABSTRACT

Internet Sound Exchange (1SX), an application for computer music composition, performance and improvisation for
Internet2, is being developed to allow sound exchanges between multiple hosts. Sound data is located on all participating
hosts and processing is distributed among these machines. This program, based on the RTcmix music programming
language, runs on SGla workstations. It sends sounds samples to remote hosts on the internet. A graphical user interface
allows the composer or improviser to create sound textures by source sound selection, sound window timings and
stochastic qualities. Before a performance event using this software, musicians on each host create source sounds to be
used in the event by any means they choose, and load the sounds into the program. They may also save patterns or sound
gesture parameters which can be triggered later in real time, which will structure the mix. In the performance phase, each
host sends and receives mixes of sounds, based on their own sounds and chosen windowing parameters, to each other via
sockets. The GUI alows the human performer on a host to make sound selection and processing choices in real time
through slider manipulation or triggering of stored patterns. Any remaining decisions not made by the performer are made
stochastically. Windowing of the source sounds allows for interesting and unique textural and timbral combinations,
aways based on the host’s source sounds. The high bandwidth and quality of service of Internet2 is required for peaksin
the density of sounds, and for situations involving larger numbers of participating hosts. Exchanges between three

Universities are planned for the year 2000.
INTRODUCTION

Interest in improvisation comes from the earliest human
musical experiences, and permeates the music of many
styles and cultures. Music composition may spring from
improvisation, and improvisation can be areatime form
of improvisation. My earlier experiments on the computer
include PieceNow, improvisation software running on the
NeXT computer around 1990, created at Columbia
University, the SoundColorsinstallation also running on
the NeXT (Helmuth, 1996), for which the earlier version
of the current program was named, and
acoustic/electronic improvisations occurring in the Live
Electronic Music courses with RTcmix taught with
percussionist-composer Allen Otte at the University of
Cincinnati in 1997, 1998 and 2000.

Perhaps one of the most recent developmentsin
improvisation concepts is to involve participants on
computers in remote location using technologies such as
ISDN. This project is concerned with realizing
performance situations between improvisers and
composers to create distinctly personal and interactive
sound exchanges. The participants using the Internet
Sound Exchange (ISX) application may interact
musically with high quality digital sound created with the
most sophisticated techniques. Using precomposed sound
samplesin ahighly flexible a gorithmic mixing
environment gives the improvisers control and quality of
sound as well as spontaneity and interactivity in
performance. As the results are dependent on each
individual improviser s sound sets and mixing strategies,
aswell asthe how this musical layer combines with the

others contributions, unique music results from each
performance and host configuration.

Flexible and reliable sound exchange requires high
bandwidth, and low latency and jitter, al of which are
goals of Internet2. Processing and sound storage is
distributed among a number of machines on the internet,
but afast connection allows musicians to interact
musicaly asif they were in the same room.

BACKGROUND

The ability to connect over the internet musically has
been improving throughout the last decade, from the
email and ftp exchanges of software and ideas, to current
web streaming audio applications and performances. As
the internet does not have currently the bandwidth to
sustain high quality sound transmission, applications for
sound exchange are appropriate uses for the high
bandwidth infrastructure being devel oped by Internet2z,
the not-for-profit consortium led by universitiesin the
United States, and including some international and
corporate members. The University of Cincinnati
presently has an OC-3 (theoretically 155.52 Mbps)
bandwidth connection to the Abilene advanced backbone
network.

Brad Garton and Dave Topper s RTCmix (Garton, 1997),
found at http://www.music.columbia.edu/cmix/, are
extensions to Paul Lansky s Cmix, found at
http://www.music.princeton.edu/ in the Princeton Sound
Kitchen. Garton introduced socket programming for
transfer of Cmix (text score) data so that real time cmix



processing programs could be initiated on remote
machines. Socket programming (Stevens, 1998) allows
interprocess communication with listening and sending
routines and structures by which datais transferred. For
example, ahost can send a message to another host to
play a sequence of Karplus-Strong notes with the cmix
STRUM instrument. The host that receives the message
runs the cmix program to synthesize and play the notesin
real time. Garton also wrote a prototype addition that
sends and receives/plays sound samples. These programs
were a starting point for 1SX.

APPLICATION DESCRIPTION

Overview

ISX is an application which allows many hosts to send
algorithmically controlled mixes of sound samplesto
each other. Sending the sound samples rather than score
data puts the responsibility and control over the sound
produced on the host which initiates the sound rather than
the receiver, insures that exactly the correct sound is sent,
and allows both sender and receiver to hear the sound.
Each host can both send and receive sound, allowing a
performer at one of the host computersto improvise in
response to other performers. Components: The
application consists of three components: 1., amodified
RTCmix software instrument NMIX, 2., an nplay
program which listens to particular sockets and plays the
incoming audio data, and 3., a GUI with which the
improviser interacts to hear and play sound. Other
programming contributors to this project are Ico Bukvic,
Ryan Meyer, and Carl McTague.

RTcmix program

The RTcmix NMIX instrument directs audio datato a
remote host on a particular socket, and may play the
sound on the current host aswell or write to disk. This
instrument was created with several additionsto the
RTcmix2.0 release in the front end (Minc) and system
functions code modules.

Listener/Player
The nplay C program listens to sockets and plays
received sounds using the SGl= audio library.

User Interface

The C++ Motif GUI contains afile selection browser, and
track control widgets which alow the improviser to select
and change source sounds, control how they are played,
the densities, durations and timing characteristics of the
sounds, and to make socket selections. The improviser
may determine functions for envelopes and gesture
control, including the probability distributions found in
RTcmix. The GUI controls both the listener/player
program and the initialization of NMIX commands which
send samples to remote systems.

HOST CONFIGURATIONS AND BANDWIDTH

Configuration

The above design allows a maximum of flexibility in host
configurations. Any host can send sound to any other host
by means of UNIX sockets. Of course, the host
configurations can vary widely for each performance.
Each configuration is structured anarchistically by the
participants as they choose to whom to listen and
respond. If the people involved decide which sockets on
which to send and receive, they can create a situation in
which any host may improvise with any subset of the
group of hosts at any time, subject to the processing
limits of the workstations.

D E—

fig. 1 Two hosts exchanging stereo sound.

"

fig. 2 One host interacting with 5 hosts.

Bandwidth

While two hosts sending one stream of stereo 44.1KHz
audio data to each other (fig. 1) will require a bandwidth
about 350 kilobytes of data per second or 2.8 Mbps, if
five hosts each send one stream of data to our host, and
we send our data back to the five other hosts (fig. 2), the
bandwidth needed is about 14 Mbps. If each of the five
hosts sends three independent streams of audio data, the
amount of datais approximately 5.3 MB/sec or 43 Mbps.
If our host could transmit to and receive from five hosts,
three streams of 4-channel data each, 85 Mbps speed
would be required. While not every moment in the mix
may be this dense, the bandwidth is needed for the
maximum amount of transmission at the heaviest
layerings. While the processing power of each machine
has limits, and it can only assimilate so much data, the
high bandwidth scenario overall allows for very dense
sound layering at peak points, and flexibility for
controlling each stream of data independently.



L

N
/

y
N

fig 3. Improvisation configuration with many hosts. This
is one socket connection configuration which may exist at
aparticular point in a performance.

IMPROVISATION EVENTS

A sound exchange using ISX consists of two phases:
setup and performance.

Setup

First, the software running on each host must be loaded
with the improviser s own soundfiles which will form the
source sound for the host s audio output. In planning the
improvisation, the musician can consider that designed
families of sounds with cataloged relationships can make
the performance easier to control and more unified.
However, aleatoric aspects of the improvisation introduce
unpredictability and the likelihood of unexpectedly
interesting mixes to occur. After sound selections are
loaded, windowing parameters for the processing of the
source sound are set. For example, along cymbal sound
sample, stored on the disk as an NeXT/.au format
soundfile of sampling rate 44.1KHZ, may be broken into
.5 second windows occurring .25 seconds apart. These
timing values can be entered into GUI fields. The
performer can also choose randomized values, within a
particular range and around a preferred value, for

stochastic sound groupings. Socket numbers are chosen
to send and listen on. The performer chooses sounds and
values for aset of tracks, which can be allocated to the
same or different sockets.

Performance

When the run button for each track is pressed, audio data
is sent on the sockets to the other hosts. The performer
can modify the window parameters and source sound
distributions with interface values and dliders. The
incoming sound sockets are selected and that sound is
heard as well.

Eventsso far

A prototype version of the program was tested on the
internet in spring of 1999 between Cincinnati and Oberlin
College s TIMARA studio, with composer Pauline
Oliveros and Corey Arcangel, but the low bandwidth of
the commercial internet speed caused breakup of the
sounds into unintelligibility creating a teletype sound,
according to Oliveros. Test exchanges with hostsin the
Cincinnati studio and the Computer Music Center at
Columbia University are happening in the summer of
2000 with SGI Indy and O2a workstations on Internet2,
so far having sent stereo 44.1 KHz audio dataon 5
sockets simultaneoudly (about 7 Mbps) with sound
received generally intactly. However any slight latency
causes big problems for audio: gapping or noisy signals,
and sending the same amount of data the other way
causes significantly worse audio results. Further work
must be done to analyze the problem, which could relate
to bandwidth or workstation processing power issues, and
to find asolution. Plans for more complex exchanges and
exchanges with other universities including the
University of Virginiaand Southern Methodist University
are made for the rest of thisyear.

IN-PROGRESS OR DESIRABLE EXTENSIONS

Expansions of the implementation are under investigation
in these aress:

1. Incorporating additional synthesis or processing
algorithmsin addition to mixing sampled sound. Asthe
Cmix programs aready exist, it simply means
recompiling them with the new version of RTcmix and
involving them in the GUI musical logic. For example,
layers of the real time granular synthesis instrument
SGRAN could be mixed with the sampled sound layers.
Processing of incoming sounds from other hostsis
another option.

2. Graphical control of envelope and gesture shaping
functions, as well as other parameters, to enhance
performance.

3. Interactions between larger numbers of hosts, and in
more complex configurations will be explored. One host
may act as a server, and mix signals from many other
hosts, and sending the information back to the other
hosts. Multicast routing should allow efficient
transmission between many hosts.



4. Multichannel work will be incorporated into the GUI.
RTcmix2.0 allows 4 channels, and higher numbers of
channels are already in use in some studios with later
versions. Thiswill alow the option of partitioning the
incoming channels of sound from a particular host into a
selected location, aiding the improviser s sense of
interacting with sound from a particular place and person.
For example, if stereo sound from Sylviaon host 2 is
placed on channels 3 and 4 in the rear of the listening
space for meon host 1, | will feel asthough Sylviais
behind me in our virtual improvisation space.

5. The software will be made more easily customizable
and ported to Linux which will encourage participation of
other computer musicians.

6. Using one communication channel, or socket, for
information passing between the GUI s of various hosts
to convey information about which host will send or
listen on each socket. The improviser could enter
information about the sounds and sockets gheis using
into a control socket communication received by the
other hosts so that the performers know which sockets to
listen for.

7. Applying MIDI controller input to sound selection,
windowing and track-layering parameters of sound to
affect the windowing parameters, or file or socket
selection.

CONCLUSION

Thisinitial exploration of high quality algorithmic digital
audio improvisation makes use of new networking
technologies to allow avirtual experimental jam session
to occur between remote performers on the computer.
The goal to make the application available to the
computer music and Internet2 communities should
encourage new kinds of musical interaction, which have
been so far largely untapped.

REFERENCES

Garton, B. and D. Topper. 1997. "RTCmix -- Using
CMIX in Real Time." Proceedings of the 1997
International Computer Music Conference, pp. 399-402.
San Francisco: International Computer Music
Association.

Helmuth, M. 1996. "Collage: Sound Colors Installation
Software.” Proceedings of the 1996 International
Computer Music Conference, pp. 251-252. San
Francisco: International Computer Music Association.

Stevens, W. Richard. 1998. UNIX network
programming.v.1. Upper Saddle River, NJ: Prentice Hall
PTR.



